As a covered entity under Title II of the Americans with Disabilities Act, the City of Los Angeles does not discriminate on the basis of disability and, upon request, will provide reasonable accommodation to ensure equal access to its programs, services and activities.

PC/STR/Corr.Lst.35 (revised 01/01/20)
B. COLUMNS OF THE FRAME

1. For members of concrete special moment resisting frame resisting earthquake induced forces subject to combined bending and axial loads, size of the frame member shall comply with:
 a. The shortest cross-sectional dimension, measured on a straight line passing through the geometric centroid, shall be at least 12 in. 18.7.2.1.a
 b. The ratio of the shortest cross sectional dimension to the perpendicular dimension shall be at least 0.4. 18.7.2.1.b

2. Lap splices shall be permitted only within the center half of the member length, shall be designed as tension lap splices, and shall be enclosed within transverse reinforcement in accordance with 18.7.5.2 and 18.7.5.3. Mechanical splices shall conform to Section 18.2.7 and welded splices shall conform to 18.2.8. 18.7.4.3

3. Flexural strengths of columns shall satisfy Eq. 18.7.3.2:
 \[
 \sum M_{nc} \geq \left(\frac{6}{5} \right) \sum M_{nb}
 \]
 18.7.3.2

4. If Sec. 18.7.3.2 is not satisfied at a joint, the lateral strength and stiffness of the columns framing into that joint shall be ignored when calculating strength and stiffness of the structure. These columns shall conform to 18.14. 18.7.3.3

5. Area of longitudinal reinforcement, \(A_{st} \), shall be at least 0.01\(A_{g} \) and shall not exceed 0.06\(A_{g} \). 18.7.4.1

6. Transverse reinforcement shall be in accordance with (a) through (f):
 a. Transverse reinforcement shall comprise either single or overlapping spirals, circular hoops, or rectilinear hoops with or without crossties.
 b. Bends of rectilinear hoops and crossties shall engage peripheral longitudinal reinforcing bars.
 c. Crossties of the same or smaller bar size as the hoops shall be permitted, subject to the limitation of 25.7.2.2. Consecutive crossties shall be alternated end for end along the longitudinal reinforcement and around the perimeter of the cross section.
 d. Where rectilinear hoops or crossties are used, they shall provide lateral support to longitudinal reinforcement in accordance with 25.7.2.2 and 25.7.2.3.
 e. Reinforcement shall be arranged such that the spacing \(h_{c} \) of longitudinal bars laterally supported by the corner of a crosstie or hoop leg shall not exceed 14 in around the perimeter of the column.
 f. Where \(P_{u} > 0.3A_{gf}f'_{c} \) or \(f_{c} > 10,000\) psi in columns with rectilinear hoops, every longitudinal bar or bundle of bars around the perimeter of the column core shall have lateral support provided by the corner of a hoop or by a seismic hook, and the value of \(h_{c} \) shall not exceed 8 in. \(P_{u} \) shall be the largest value in compression consistent with factored load combinations including \(E \).

7. For transverse reinforcement (confinement), provide details as follows:
 a. The spacing of transverse reinforcement shall not exceed the smallest of following:
 i. \(1/4 \) of minimum member dimension,
 ii. 6 times the diameter of the longitudinal reinforcement,
 iii. \(s_{o} = 4 + \left(\frac{14-h_{c}}{3} \right) \)
 The value of \(s_{o} \) shall not exceed 6 in. and need not be taken less than 4 in.
 b. Amount of transverse reinforcement shall be accordance with table 18.7.5.4.
 c. Transverse reinforcement as specified in 18.7.5.2 through 18.7.5.4 shall be provided over a length \(l_{o} \) from each joint face and on both sides of any section where flexural yielding is likely to occur because of lateral displacements beyond the elastic range of behavior. Length \(l_{o} \) shall be at least the greatest of:
 i. the depth of the member at the joint face or at the section where flexural yielding is likely to occur;
 ii. one-sixth of the clear span of the member; and
 iii. 18". 18.7.5.1
 d. Beyond the length to specified in 18.7.5.1, the column shall contain spiral or hoop reinforcement satisfying 25.7.2 through 25.7.4 with the spacing not exceeding the lesser of 6 times the diameter of the smallest longitudinal column bars and \(6" \). 18.7.5.5
 e. Columns supporting reactions from discontinuous stiff members, such as walls, shall satisfy (a) and (b):
 i. Transverse reinforcement as required in 18.7.5.2 through 18.7.5.4 over the full height at all levels beneath the discontinuity if the factored axial compressive force in these columns, related to earthquake effect, exceeds \(A_{gf}f'_{c}/10 \). Where design forces have been magnified to account for the over-strength of the vertical elements of the seismic-force-resisting system, the limit of \(A_{gf}f'_{c}/10 \) shall be increased to \(A_{gf}f'_{c}/4 \). 18.7.5.6.a
 ii. Transverse reinforcement shall extend into the discontinued member at least \(l_{o} \) of the largest longitudinal column bar, where \(l_{o} \) is determined in accordance with 18.8.5. Where the lower end of the column terminates on a wall, the required transverse reinforcement shall extend into the wall at least \(l_{o} \) of the largest longitudinal column bar at the point of termination. Where the column terminates on a footing or mat, the required transverse reinforcement shall extend at least 12 in. into the footing or mat. 18.7.5.6.b
 f. Where the calculated point of contra flexure is not within the middle half of the member clear height, provide transverse reinforcement as specified in ACI 318 Section 18.7.5.1 items (a) through (c), over the full height of the member
 LABC 1905.1.9 amendment to add Section 18.7.5.8 to ACI 318-14
 g. At any section where the design strength, \(\phi P_{n} \), of the column is less than the sum of the shears \(V_{o} \) computed in accordance with ACI 318 Sections 18.6.5.1 and 18.7.6.1.1 for all the beams framing into the column above the level under consideration, transverse reinforcement as specified in ACI 318 Sections 18.7.5.1 through 18.7.5.3 shall be provided. For beams framing into opposite sides of the column, the moment components may be assumed to be of opposite sign. For determination of the design strength, \(\phi P_{n} \), of the column, these moments may be assumed to result from the deformation of the frame in any one principal axis.
 LABC 1905.1.10 amendment to add Section 18.7.5.9 to ACI 318-14
C. JOINTS OF THE FRAME

1. At joints of frames, provide details as follows:

 a. Beam longitudinal reinforcement terminated in a column shall be extended to the far face of the confined column core and anchored in tension according to 18.8.5 and in compression according to 25.4.9. 18.8.2.2
 b. Where longitudinal reinforcement extends through a beam-column joint, the column dimension parallel to the beam reinforcement shall not be less than 20 times the diameter of the largest longitudinal bar for normal weight concrete. For lightweight aggregate concrete, the dimension shall not be less than 26 times the bar diameter. 18.8.2.3
 c. Depth h of the joint shall not be less than one-half of depth h of any beam framing into the joint and generating joint shear as part of the seismic-force resisting system. 18.8.2.4
 d. The joint transverse reinforcement shall satisfy 18.7.5.2, 18.7.5.3, 18.7.4, and 18.7.5.7, except as permitted in 18.8.3.2. 18.8.3.1

2. Strength Reduction Factor Strength reduction factor used to calculate the design strength shall be follows:

 a. $\phi = 0.75$ for shear (also reference to 21.2.4.1 for ϕ)
 b. $\phi = 0.90$ for tension-controlled sections
 c. $\phi = 0.75^*$ for axial compression load (members with spiral reinforcing)
 d. $\phi = 0.65^*$ for axial compression load (members with other reinforced members)

 (* Variation of ϕ for transition members per Table 21.2.2)

PART II: CALCULATIONS

A. LOADS AND SERVICEABILITY REQUIREMENTS

1. Use the following load combinations for members in concrete special moment resisting frame resisting earthquake induced forces: 5.3

 a. $U= 1.4D$
 b. $U= 1.2D + 1.6L + 0.5L_v$
 c. $U= 1.2D + 1.6L + 1.0L_v$
 d. $U= 1.2D + 1.0E + 1.0L_s$
 e. $U= 0.9D + 1.0E$

2. Strength Reduction Factor

 a. Use the following load combinations for members in concrete special moment resisting frame resisting earthquake induced forces: 5.3

 b. Assume $V_c = 0$ when both of the following conditions occur: 18.6.5.2

 a. The earthquake induced shear force calculated in accordance with section 18.6.5.1 represents one half of the maximum required shear strength within the lengths;
 b. The factored axial compressive force including earthquake effects is less than $A_{phi}/20$.

C. COLUMNS OF THE FRAME

For columns of frames, provide the following requirements:

1. Flexural strengths of columns shall satisfy Eq. 18.7.3.2:

 $$\sum M_{nc} \geq \left(\frac{f_y}{f_c} \right)^{\phi} \sum M_{nb}$$

 Otherwise, the lateral strength and stiffness of the columns framing into that joint shall be ignored when determining the calculated strength and stiffness of the structure. 18.7.3.3

2. Amount of transverse reinforcement shall be in accordance with Table 18.7.5.4:

 a. $k_f = \frac{r'c}{25,000} + 0.6 \geq 1.0$ 18.7.5.4a
 b. $k_n = \frac{n_b}{n_l}$ 18.7.5.4b

 where n_l is the number of longitudinal bars or bar bundles around the perimeter of the column core with rectilinear hoops that are laterally supported by the corn of hoops or by seismic hooks.
c. Traverse reinforcement for rectilinear hook shall be:
 i. For $P_u \leq 0.3A_g f'_c$, and $f'_c \leq 10,000$ psi, A_{oh}/sb_c shall be the greater of the following two formulas: Table 18.7.5.4
 \[
 \frac{A_{sh}}{sb_c} = 0.3 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f'_c}{f_yt} \\
 \frac{A_{sh}}{sb_c} = 0.09 \frac{f'_c}{f_yt}
 \]
 ii. For $P_u > 0.3A_g f'_c$ or $f'_c > 10,000$ psi, A_{oh}/sb_c shall be the greatest of the following three formulas: Table 18.7.5.4
 \[
 \frac{A_{sh}}{sb_c} = 0.3 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f'_c}{f_yt} \\
 \frac{A_{sh}}{sb_c} = 0.09 \frac{f'_c}{f_yt} \\
 \frac{A_{sh}}{sb_c} = 0.2k_f k_n \frac{P_u}{f_yt A_{ch}}
 \]
 d. Transverse reinforcement for spiral or circular hoop shall be: (table 18.7.5.4)
 i. For $P_u \leq 0.3A_g f'_c$ and $f'_c \leq 10,000$ psi, ρ_s shall be the greater of the following two formulas: Table 18.7.5.4
 \[
 \rho_s = 0.45 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f'_c}{f_yt} \\
 \rho_s = 0.12 \frac{f'_c}{f_yt}
 \]
 ii. For $P_u > 0.3A_g f'_c$ or $f'_c > 10,000$ psi, ρ_s shall be the greatest of the following three formulas: Table 18.7.5.4
 \[
 \rho_s = 0.45 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f'_c}{f_yt} \\
 \rho_s = 0.12 \frac{f'_c}{f_yt} \\
 \rho_s = 0.35k_f \frac{P_u}{f_yt A_{ch}}
 \]

3. If the thickness of the concrete cover outside the confining transverse reinforcement exceeds 4 in., additional transverse reinforcement shall be provided at a spacing not exceeding 12 in. Concrete over additional reinforcement shall not exceed 4 in. 18.7.5.7
4. Assume $V_c = 0$ for transverse reinforcement over the length l_o when both of the following conditions occur: 18.7.5.1, 18.7.6.2.1
 a. The earthquake induced shear force calculated per section 18.7.6.1 represents one half or more of the maximum required shear strength within l_o.
 b. The factored axial compression force including earthquake effects is less than $A_g f'_c/20$

PART III: ADDITIONAL CORRECTIONS:

1. For concrete in members resisting earthquake induced forces, the minimum compressive strength of concrete shall be per table 19.2.1.1 18.2.5.1
 a. 3,000 psi minimum for normal weight concretes.
 b. 3,000 psi minimum and 5,000 psi maximum for light weight concrete.
2. For reinforcement in members resisting earthquake induced forces, the reinforcement shall comply with the special seismic systems requirements of 20.2.2. 18.2.6
 a. All reinforcement shall comply with ASTM A706 Grade 60. 20.2.2.2.a
 b. ASTM A615 Grades 40 reinforcement if (i) and (ii) are satisfied and 60 reinforcement if (i) through (iii) are satisfied: 20.2.2.2.b
 i. Actual yield strength based on mill test does not exceed f_y by more than 18000 psi
 ii. Actual tensile strength / actual yield strength < 1.25
 iii. Minimum elongation in 8 in. shall be at least 14 percent for bar size No. 3 through No. 6, at least 12 percent for bar sizes No. 7 through No. 11, and at least 10 per cent for bar sizes No. 14 and No. 18.
 c. The value of f_y used to compute the amount of confinement reinforcement shall not exceed 100,000 psi. Table 20.2.2.4a