SOLAR PV MICROINVERTER/ACM STANDARD PLAN - COMPREHENSIVE

Microinverter and ACM Systems for One- and Two- Family Dwellings

SCOPE: Use this plan ONLY for systems using utility-interactive Microinverters or AC Modules (ACM) not exceeding a combined system ac inverter output rating of 10 kW on a roof of a one or two family dwelling or accessory structure. The photovoltaic system must interconnect to a single-phase ac service panel of 120/240 Vac with service panel busbar rating of 225 A or less. This plan is not intended for bipolar systems, hybrid systems, or systems that utilize storage batteries, charge controllers, or tracker or more than 4 branch circuits. Systems must be in compliance with current California Building Standards Codes and local amendments of the authority having jurisdiction (AHJ). Other articles of the California Electrical Code (CEC) shall apply as specified in section 690.3.

MANUFACTURER’S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverters, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application (CEC 690.4(D)).

Applicant and Site Information

Job Address: ___ Permit #: ________________________________

Contractor/ Engineer Name: _______________________________ License # and Class: ______________________________

Signature: __________________ Date: __________________ Phone Number: ____________________________

1 **General Requirements and System Information**

☐ Microinverter

Number of PV modules installed: __________

Number of Microinverters installed: __________

☐ AC Module (ACM)

Number of ACM’s installed: __________

Note: Listed Alternating-Current Module (ACM) is defined in CEC 690.2 and installed per CEC 690.6

Number of Branch Circuits, 1, 2, 3, or 4: __________

Total ac system power rating = (Number of Microinverters or ACMs) * (ac inverter power output) = __________ Watts

1.1 Lowest expected ambient temperature for the location: \(T_{L} \) = __________ °C

1.2 Average ambient high temperature for the location: \(T_{H} \) = __________ °C

Provide the name of the source used to determine \(T_{L} \) and \(T_{H} \): ____________________________

2 **Microinverter or ACM Information and Ratings**

Microinverters with ungrounded dc inputs shall be installed in accordance with CEC 690.35.

Microinverter or ACM Manufacturer: ____________________________

Model: ____________________________

2.1 Rated (continuous) ac output power: __________ Watts

2.2 Nominal ac Voltage Rating: __________ Volts

2.3 Rated (continuous) ac output current: __________ Amps

If installing ACMs, skip [STEPS 2.4 and 2.5]

2.4 Maximum dc Input Voltage Rating: __________ Volts

2.5 Maximum dc Input Current Rating: __________ Amps

2.6 Maximum dc Input Short Circuit Current Rating: __________ Amps (if provided by manufacturer)

3 **PV Module Information**

(If installing ACMs, skip to [STEP 6])

PV Module Manufacturer: ____________________________

Model: ____________________________

Module dc output power under standard test conditions (STC) = __________ Watts

3.1 Module \(V_{OC} \) at STC (from module nameplate): __________ Volts

3.2 Module \(I_{SC} \) at STC (from module nameplate): __________ Amps

Plan Reviewer Initials: _____
4 **PV Module Maximum DC Voltage**
(If installing ACMs, skip to [STEP 6])

Maximum dc voltage shall not exceed inverter manufacturer’s maximum input voltage rating [STEP 2.4] ________ Volts. If the open-circuit voltage (V_{oc} from [STEP 3.1]) temperature coefficients (β or ε) are provided by the module manufacturer, use the calculation in Method 1. If V_{oc} temperature coefficient is not provided by the module manufacturer, use the calculation in Method 2.

4.1 Method 1:
V_{oc} temperature coefficient (β)= ________ %/°C
Max number of modules per inverter ________ x \{V_{oc} + [(T_{L} - 25) \times (β \times V_{oc})/100]\} = ________ Volts

If module manufacturer provides a voltage temperature coefficient (ε) in mV/°C, use the formula below.

V_{oc} temperature coefficient (ε)= ________ mV/°C
Max number of modules per inverter ________ x \{V_{oc} + [(T_{L} - 25) \times (ε/1000)]\} = ________ Volts

4.2 Method 2:
Maximum number of modules per inverter ________ x V_{oc} ________ x K_{T} = ________ Volts,
Where K_{T}= ________ is a correction factor for ambient temperatures below 25 °C. See Table 690.7.

Verify the Low Temperature V_{oc} is less than the Microinverter maximum input voltage from [STEP 2.4]: □ Yes □ No

5 **PV Short Circuit Current**
(If installing ACMs, skip to [STEP 6])

5.1 Calculate the Maximum Short Circuit Current for the PV module
Adjust the PV current for peak sunlight (x 1.25) and compare it to the microinverter Maximum dc Input Short Circuit Current Rating. (If Max dc Input Short Circuit Current rating is not provided by manufacturer, use 1.5 x Max dc Input rating (per UL 1741)):

5.1.1 Maximum Short Circuit Current = (PV Short Circuit Current, I_{SC} from [STEP 3.2]) \times 1.25 = ________ Amps

5.1.2 Verify Maximum Short Circuit Current [STEP 5.1.1] is equal to or less than the Maximum dc Input Short Circuit Current [STEP 2.6] = ________ Amps or the Maximum dc Input Current [STEP 2.5] \times 1.5 = ________ Amps

6 **Branch and Combined Inverter Output Circuit Information and Calculations**
Fill in [Table 1] to describe the Branch and Combined System circuits.

| Circuit Power = (Number of Microinverters or ACMs) \times (Rated ac output power [STEP 2.1]) = ________ Watts |
| Circuit Current = (Circuit Power) / (Nominal ac voltage [STEP 2.2]) = ________ Amps |

Table 1 - OCPD and Ampacity Current Calculations

<table>
<thead>
<tr>
<th>Number of Microinverters or ACMs</th>
<th>Branch 1</th>
<th>Branch 2</th>
<th>Branch 3</th>
<th>Branch 4</th>
<th>Combined Inverter Output Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Power for each unit [STEP 2.1], Watts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Power, Watts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal ac Voltage [STEP 2.2], Volts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Current, Amps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 **Sizing Branch and Combined Inverter Output Circuit Conductors**
Calculate the current using both Method A [STEP 7.1] and Method B [STEP 7.2] for each Branch and the Combined Inverter Output Circuit from [Table 1]. Enter the results in [Table 2].
7.1 Method A:

7.1.1 Each Branch Circuit Current, Method A
(Number Microinverters/ACMs) * (AC power [STEP 2.1]) / (Nominal ac voltage [STEP 2.2]) x 1.25 = ________ Amps

7.1.2 Combined Inverter Output Circuit Current, Method A
(Total Number Microinverters/ACMs) * (AC power [STEP 2.1]) / (Nominal ac voltage [STEP 2.2]) x 1.25 = ________ Amps

7.2 Method B:
Number of current-carrying branch and combined output circuit conductors in each raceway: ________.
Each Raceway height above the roof: ________ inches (if not applicable indicate N/A)
The correction factors for each raceway:
\[C_T = \frac{C_x}{C_r} \]
\[C_r = \frac{C_s}{C_F} \]
\[C_s = \frac{C_F}{C_f} \]

7.2.1 Each Branch Circuit Current, Method B
(Number Microinverters/ACMs) * (AC power [STEP 2.1]) / (Nominal ac voltage [STEP 2.2]) / (C_T x C_r) = ________ Amps

7.2.2 Combined Inverter Output Circuit Current, Method B
(Total Number Microinverters/ACMs) * (AC power [STEP 2.1]) / (Nominal ac voltage [STEP 2.2]) / (C_T x C_r) = ________ Amps

7.3 Determine Conductor Size
Using the greater ampacity as calculated in Method A or Method B, use Table 310.15(B)(16) to identify the ac circuit conductor size. The conductor ampacity shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (typically 60°C or 75°C).

Table 2 – Branch and Combined Circuit Currents, Correction Factors, and Conductor Sizes

<table>
<thead>
<tr>
<th>Method</th>
<th>Branch 1</th>
<th>Branch 2</th>
<th>Branch 3</th>
<th>Branch 4</th>
<th>Combined Inverter Output Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Method A: Branch and Combined Circuit Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2 Method B: Number of current carrying conductors for Branch and Combined Circuit Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2 Method B: Raceway height above the roof</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2 Method B: (C_T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2 Method B: (C_T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2 Method B: Branch and Combined Circuit Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Conductor Size, AWG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 Branch and Combined Inverter Output Circuit OCPD Size
Determine the OCPD size for each Branch Circuit and for the Combined Inverter Output Circuit. Use CEC 690.8(B)(1) to determine the OCPD size. Calculate the circuit current for each branch circuit. Enter the results in Table 3.

8.1.1 Each Branch Circuit Current for OCPD Sizing
(Number Microinverters/ACMs) * (AC power [STEP 2.1]) / (Nominal ac voltage [STEP 2.2]) x 1.25 = ________ Amps

8.1.2 Combined Inverter Output Circuit for OCPD Sizing
(Total Number Microinverters/ACMs) * (AC power [STEP 2.1]) / (Nominal ac voltage [STEP 2.2]) x 1.25 = ________ Amps

Size the inverter output OCPD based on the value calculated above. Where the figure is between two standard values of fuse/breaker sizes (see CEC 240.6(A)), the next higher size may be used provided the conductors are sufficiently sized. The OCPD’s rating may not exceed the conductor ampacity or the inverter manufacturer’s max OCPD rating for the inverter.
Table 3 - Branch and Combined Inverter Output Circuit OCPD Sizing

<table>
<thead>
<tr>
<th>Branch and Inverter Output OCPD, Amps</th>
<th>Branch 1</th>
<th>Branch 2</th>
<th>Branch 3</th>
<th>Branch 4</th>
<th>Combined Inverter Output Circuit</th>
</tr>
</thead>
</table>

9 **Solar Load Center**
The sum of the ampere ratings of overcurrent devices in circuits supplying power to a busbar or conductor shall not exceed 120 percent of the rating of the busbar or conductor [CEC 705.12(D)(2)].

9.1 Solar Load center busbar rating: __________ Amps

9.2 Using [Table 3], (Sum of all inverter output Branch OCPDs) __________ Amps + (Combined Systems OCPD) __________ Amps = __________ Amps ≤ 120% of [STEP 9.1] Amps.

10 **Point of Connection to Utility:**
One of the following methods of interconnection must be utilized.

10.1 **Supply Side Connection:** □ Yes □ No
Check with your local jurisdiction to determine if this connection is allowed.

Supply side connections shall only be permitted where the service panel is listed for the purpose. The sum of the ratings of all overcurrent devices connected to power production sources shall not exceed the rating of the service. The connection shall not compromise listing or integrity of any equipment.

10.2 **Load Side Connection:** □ Yes □ No
Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location? □ Yes □ No

If No to the statement above, the sum of OCPD(s) supplying the panel cannot exceed 100% of the bus circle 100% as the multiplier in calculation. Otherwise, circle 120% and use that as the multiplier.

Per 705.12(D)(2): [Inverter output OCPD size [Table 3] + Main OCPD Size] ≤ [Bus size x (100% or 120%)]

Table 4 - Maximum Combined Inverter Output Circuit OCPD, CEC 705.12(D)(2)

<table>
<thead>
<tr>
<th>Busbar Size (Amps)</th>
<th>100</th>
<th>125</th>
<th>125</th>
<th>200</th>
<th>200</th>
<th>200</th>
<th>225</th>
<th>225</th>
<th>225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main OCPD (Amps)</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
<td>200</td>
<td>175</td>
<td>200</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Maximum Combined Inverter OCPD with 120% of busbar rating (Amps)</td>
<td>20</td>
<td>50</td>
<td>25</td>
<td>60†</td>
<td>60†</td>
<td>40</td>
<td>60†</td>
<td>60†</td>
<td>45</td>
</tr>
<tr>
<td>Maximum Combined Inverter OCPD with 100% of busbar rating (Amps)</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>50</td>
<td>25</td>
<td>0</td>
<td>50</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

† This plan limits the maximum system size to less than 10 kW, therefore the OCPD size is limited to 60 A. If the main breaker is reduced, a load calculation per Article 220 must accompany the Standard Plans to show that the reduction is allowed.

All upstream panelboard busbar ratings must also comply with CEC 705.12(D)(2).

11 **Grounding and Bonding**
Check one of the boxes for whether system is grounded or ungrounded: □ Grounded, □ Ungrounded.

For Microinverters with a grounded dc input, systems must follow the requirements of GEC (CEC 690.47) and EGC (CEC 690.43).

For ACM systems and Microinverters with ungrounded a dc input follow the EGC requirements of (CEC 690.43).

11.1 **All Systems:**
Modules and racking must be bonded by a method listed to the respective UL standard and recognized by the respective equipment manufacturers. Bonding method is subject to AHJ approval. DC and ac equipment grounding conductor (EGC) shall be sized based on source and output circuit conductors per 690.45 using Table 250.122. Where exposed to physical damage, it is required to be #6 AWG copper per 690.46. A dc EGC is required for both grounded and ungrounded systems. If an existing premises grounding electrode system is not present, a new grounding electrode system must be established per 250.53.
Where supplementary grounding electrodes are installed, a bonding jumper to the existing grounding electrode must be installed. Bonding jumpers must be sized to the larger grounding conductor that it is bonded to, 250.58

11.2 Grounded Systems:
The dc grounding electrode conductor (GEC) from the inverter terminal must be unbroken or irreversibly spliced and sized minimum #8 AWG copper per article 250.166. The dc GEC from the inverter terminal to the existing grounding electrode system must tie to the existing grounding electrode or be bonded to the existing ac GEC using an irreversible means, per 250.64(C)(1).

A combined dc GEC and ac EGC may be run from the inverter dc grounding terminal to the grounding busbar in the associated ac equipment. This combined grounding conductor must be sized to the larger of the GEC and EGC sizes, with the bonding requirements of EGCs and remaining continuous as a GEC, per 690.47(C)(3).

11.3 Ungrounded Systems:
A dc GEC shall not be required from the inverter dc grounding terminal to the building grounding electrode system. The EGC shall run from the inverter to the grounding busbar in the associated ac equipment, sized per 690.45, using Table 250.122. Ungrounded conductors must be identified per 210.5(C). White-finished conductors are not permitted.

12 Markings
Per Section CEC 690.54, a permanent label shall be installed at an accessible location at the PV ac disconnecting means that shall indicate the following:

12.1 Rated ac Output current (total Combined System Current from [Table 1]) _______ Amps
12.2 Nominal Operating ac Voltage [STEP 2.2] _________ Volts

CEC Articles 690 and 705 and CRC Section R331 require the following labels or markings be installed at these components of the photovoltaic system:

Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8") should be considered the minimum.
SOLAR PV MICROINVERTER/ACM STANDARD PLAN - COMPREHENSIVE
Microinverter and ACM Systems for One- and Two- Family Dwellings

13 Single-Inverter Line Diagram

Equipment Diagram

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION: (provide model number and description)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solar PV Module or ACM:</td>
</tr>
<tr>
<td>2</td>
<td>Microinverter (if not ACM):</td>
</tr>
<tr>
<td>3</td>
<td>Junction Box(es):</td>
</tr>
<tr>
<td>4</td>
<td>Solar Load Center, Yes / No:</td>
</tr>
<tr>
<td>5</td>
<td>Performance Meter, Yes / No:</td>
</tr>
<tr>
<td>6</td>
<td>*Utility External Disconnect Switch Yes / No:</td>
</tr>
<tr>
<td>7</td>
<td>Main Electrical Service Panel</td>
</tr>
</tbody>
</table>

Single-Line Diagram for Microinverters or ACMs

Check a box for dc system grounding: □ Grounded, □ Ungrounded
For ungrounded dc power systems, EGC is required
For grounded dc power systems, GEC & EGC are required
Refer to CEC 250.120 for EGC installation & Table 250.122 for sizing

* Consult with your local AHJ and/or Utility

Conductor, Cable and Conduit Schedule

<table>
<thead>
<tr>
<th>TAG</th>
<th>Description and Conductor Type: (Table 2)</th>
<th>Conductor Size</th>
<th>Number of Conductors</th>
<th>Conduit/Conductor/Cable Type</th>
<th>Conduit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Current-Carrying Conductors: (for each branch circuit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEC (when required):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Current-Carrying Conductors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEC (when required):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Main Service Panel OCPDs

Main OCPD size(Table 4):________________
Combined Inverter Output OCPD(Table 3):________
Main Service Panel Busbar(Table 4):________

DC GEC, When Required

Branch Circuit OCPDs (Table 3)

Branch 1 OCPD size _____
Branch 2 OCPD size _____
Branch 3 OCPD size _____
Branch 4 OCPD size _____
Solar Load Center Busbar (Sec. 10.1) ______

Conduit, Cable and Conduit Schedule

A

B

EGC:

GEC (when required):

Current-Carrying Conductors:

B

EGC:

GEC (when required):

Current-Carrying Conductors:

EGC:

GEC (when required):

Current-Carrying Conductors:

EGC:

GEC (when required):